skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blakemore, James_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tuning of redox‐active complexes featuring metals with high coordination numbers by incorporation of secondary redox‐inactive cations has received far less attention than it deserves. Here, appending moderate steric bulk to a tripodal ligand framework has been tested for its influence on secondary‐cation‐driven structural and electrochemical tuning of cerium, a lanthanide that tends to adopt high coordination numbers. Aquasi‐C3‐symmetric cerium(III) complex denoted[Ce]has been prepared that features pendant benzyloxy groups, and this work demonstrates that this species offers a site capable of binding single Na+or Ca2+ions. Electrochemical and UV‐visible spectroscopic studies reveal equilibrium binding affinity of[Ce]for Na+in acetonitrile solvent, contrasting with tight binding of all cations in all other previously studied systems of this type. The modulated cation binding can be attributed to the bulky benzyloxy groups, which impact the thermodynamics of cation binding but do not impede the formation of cerium centers with coordination number 8 upon binding of either Na+or Ca2+. The Ce(IV/III) reduction potential was found to be tunable under the equilibrium binding conditions, highlighting the potentially significant role that controlled structural changes can play in modulating the solution properties of heterobimetallic complexes. 
    more » « less